首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5390篇
  免费   833篇
  国内免费   152篇
化学   189篇
晶体学   16篇
力学   2181篇
综合类   41篇
数学   1040篇
物理学   2908篇
  2024年   15篇
  2023年   47篇
  2022年   60篇
  2021年   87篇
  2020年   177篇
  2019年   160篇
  2018年   113篇
  2017年   168篇
  2016年   160篇
  2015年   180篇
  2014年   277篇
  2013年   346篇
  2012年   239篇
  2011年   345篇
  2010年   256篇
  2009年   336篇
  2008年   351篇
  2007年   324篇
  2006年   313篇
  2005年   250篇
  2004年   244篇
  2003年   255篇
  2002年   227篇
  2001年   156篇
  2000年   159篇
  1999年   124篇
  1998年   112篇
  1997年   112篇
  1996年   102篇
  1995年   89篇
  1994年   79篇
  1993年   75篇
  1992年   71篇
  1991年   69篇
  1990年   44篇
  1989年   42篇
  1988年   38篇
  1987年   28篇
  1986年   25篇
  1985年   28篇
  1984年   21篇
  1983年   6篇
  1982年   18篇
  1981年   8篇
  1980年   10篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1973年   7篇
  1971年   4篇
排序方式: 共有6375条查询结果,搜索用时 31 毫秒
1.
2.
The evolution of surface gravity waves is driven by nonlinear interactions that trigger an energy cascade similarly to the one observed in hydrodynamic turbulence. This process, known as wave turbulence, has been found to display anomalous scaling with deviation from classical turbulent predictions due to the emergence of coherent and intermittent structures on the water surface. In the ocean, waves are spread over a wide range of directions, with a consequent attenuation of the nonlinear properties. A laboratory experiment in a large wave facility is presented to discuss the sensitivity of wave turbulence on the directional properties of model wave spectra. Results show that the occurrence of coherent and intermittent structures become less likely with the broadening of the wave directional spreading. There is no evidence, however, that intermittency completely vanishes.  相似文献   
3.
4.
The Shallow–Water Equations (SWEs), also referred to as the de Saint-Venant equations, constitute the current governing mathematical tool for free-surface water flows. These include, e.g., flood flows in rivers and in urban zones, flows across hydraulic structures as dams or wastewater facilities, flows in the environmental fields, glaciology, or meteorology. Despite this attractiveness, the system of two partial differential equations has an exact mathematical solution only for a limited number of problems of practical relevance.This historical work on the SWEs is based on a correspondence between two 19th-century scientists, de Saint-Venant and Boussinesq. Their well-known papers are thus commented from the point of development of their theory; the input of both scientists is evidenced by their writings, and comments of both to each other that led to what is commonly known as the SWEs. Given the age difference of the two of 45 years, the experienced engineer de Saint-Venant, and the mathematician Boussinesq, two eminent researchers, met to discuss not only problems in hydraulics, but in physics generally. In addition, their correspondence embraced also questions in ethics, religion, history of sciences, and personal news.The results of the SWEs cease to hold if streamline curvature effects dominate; this includes breaking waves, solitary and cnoidal waves, or non-linear waves in general. In most other cases, however, the SWEs perfectly apply to typical flows in engineering practice; they are considered the fundamental system of equations describing open channel flows. This work thus provides a background to its birth, including lots of comments as to its improvement, physical meanings, methods of solution, and a discussion of the results. This paper also deals with the steady flow equations, gives a short account on the main persons mentioned in the Correspondence, and provides a summary of further developments of the SWEs until 1920.  相似文献   
5.
In this paper, we investigated the (2+1)-dimensional Konopelchenko–Dubrovsky equation. The lump waves, solitary waves as well as interaction between lump waves and solitary waves are presented based on the Hirota bilinear form of this equation. It is worth noting that the rational solutions are obtained by taking a long wave limit, and we also discussed the lump solutions and rogue wave solutions. Moreover, all these solutions are presented via 3-dimensional plots and density plots with choosing some special parameters to show the dynamic graphs.  相似文献   
6.
It is believed that there are more fundamental gauge symmetries beyond those described by the Standard Model of particle physics. The scales of these new gauge symmetries are usually too high to be reachable by particle colliders. Considering that the phase transition (PT) relating to the spontaneous breaking of new gauge symmetries to the electroweak symmetry might be strongly first order, we propose considering the stochastic gravitational waves (GW) arising from this phase transition as an indirect way of detecting these new fundamental gauge symmetries. As an illustration, we explore the possibility of detecting the stochastic GW generated from the PT of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} in the space-based interferometer detectors. Our study demonstrates that the GW energy spectrum is reachable by the LISA, Tianqin, Taiji, BBO, and DECIGO experiments only for the case where the spontaneous breaking of \begin{document}$ {\bf{B}}-{\bf{L}}$\end{document} is triggered by at least two electroweak singlet scalars.  相似文献   
7.
Dispersive shock waves (DSWs) in the three dimensional Benjamin–Ono (3DBO) equation are studied with step-like initial condition along a paraboloid front. By using a similarity reduction, the problem of studying DSWs in three space one time (3+1) dimensions reduces to finding DSW solution of a (1+1) dimensional equation. By using a special ansatz, the 3DBO equation exactly reduces to the spherical Benjamin–Ono (sBO) equation. Whitham modulation equations are derived which describes DSW evolution in the sBO equation by using a perturbation method. These equations are written in terms of appropriate Riemann type variables to obtain the sBO-Whitham system. DSW solution which is obtained from the numerical solutions of the Whitham system and the direct numerical solution of the sBO equation are compared. In this comparison, a good agreement is found between these solutions. Also, some physical qualitative results about DSWs in sBO equation are presented. It is concluded that DSW solutions in the reduced sBO equation provide some information about DSW behavior along the paraboloid fronts in the 3DBO equation.  相似文献   
8.
This work investigates the detection of binary neutron stars gravitational wave based on convolutional neural network(CNN).To promote the detection performance and efficiency,we proposed a scheme based on wavelet packet(WP)decomposition and CNN.The WP decomposition is a time-frequency method and can enhance the discriminant features between gravitational wave signal and noise before detection.The CNN conducts the gravitational wave detection by learning a function mapping relation from the data under being processed to the space of detection results.This function-mapping-relation style detection scheme can detection efficiency significantly.In this work,instrument effects are con-sidered,and the noise are computed from a power spectral density(PSD)equivalent to the Advanced LIGO design sensitivity.The quantitative evaluations and comparisons with the state-of-art method matched filtering show the excellent performances for BNS gravitational wave detection.On efficiency,the current experiments show that this WP-CNN-based scheme is more than 960 times faster than the matched filtering.  相似文献   
9.
Hai-Nan Lin  Xin Li 《中国物理C(英文版)》2020,44(7):075101-075101-5
We propose a new method to test the cosmic distance duality relation using the strongly lensed gravitational waves. The simultaneous observation of the image positions, relative time delay between different images, redshift measurements of the lens and the source, together with the mass modelling of the lens galaxy, provide the angular diameter distance to the gravitational wave source. On the other hand, the luminosity distance to the source can be obtained from the observation of the gravitational wave signals. To our knowledge this is the first time a method is proposed to simultaneously measure the angular diameter distance and the luminosity distance from the same source. Hence, the strongly lensed gravitational waves provide a unique method to test the cosmic distance duality relation. With the construction of the third generation gravitational detectors such as the Einstein Telescope, it will be possible to test the cosmic distance duality relation with an accuracy of a few percent.  相似文献   
10.
The remap phase in arbitrary Lagrangian–Eulerian (ALE) hydrodynamics involves the transfer of field quantities defined on a post‐Lagrangian mesh to some new mesh, usually generated by a mesh optimization algorithm. This problem is often posed in terms of transporting (or advecting) some state variable from the old mesh to the new mesh over a fictitious time interval. It is imperative that this remap process be monotonic, that is, not generate any new extrema in the field variables. It is well known that the only linear methods that are guaranteed to be monotonic for such problems are first‐order accurate; however, much work has been performed in developing non‐linear methods, which blend both high and low (first) order solutions to achieve monotonicity and preserve high‐order accuracy when the field is sufficiently smooth. In this paper, we present a set of methods for enforcing monotonicity targeting high‐order discontinuous Galerkin methods for advection equations in the context of high‐order curvilinear ALE hydrodynamics. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号